ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 413 ПЕТРОДВОРЦОВОГО РАЙОНА

ПРИНЯТО

на педагогическом совете ГБОУ школы № 413 Петродворцового района Санкт-Петербурга (протокол № 7 от 23.05.2019г

Рассмотрено на заседании методического объединения Протокол №5 от 08.05.2019

УТВЕРЖДЕН Приказом № 130 от 24.05. : Директор ГБОУ школы № Петродворцового района Санкт-Петербурга Н.Л. Бояр

РАБОЧАЯ ПРОГРАММА

Геометрия. 10-11 классы (наименование учебного предмета (курса)

среднего общего образования

(указания на принадлежность рабочей учебной программы уровню общего образования)

> Составила: учителя математики Мелихова А.Г Бояр Н.Л.

Пояснительная записка

Статус документа

Рабочая программа по геометрии составлена на основе федерального компонента государственного стандарта среднего общего образования.

Данная рабочая программа ориентирована на учащихся 10-11 классов и реализуется на основе следующих документов:

- Федерального закона «Об образовании в Российской Федерации» от 29.12.2012 $\Phi 3-273$
- Федерального базисного учебного плана, утвержденного приказом Министерства образования Российской Федерации от 09.03.2004 № 1312 (далее ФБУП-2004);
- Федерального компонента государственных образовательных стандартов общего образования, утвержденного приказом Министерства образования Российской Федерации от 05.03.2004 № 1089 «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования» (далее ФКГОС) (для 1X-XI (XII) классов);
- Программ общеобразовательных учреждений. Геометрия. 10-11 классы. Сост. Бурмистрова Т.А.
 - Учебного плана ГБОУ школа № 413 Петродворцового района Санкт-Петербурга

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.

Рабочая программа выполняет две основные функции:

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени среднего общего образования отводится 5 ч в неделю 10 и 11 классах. Из них на геометрию по 2 часа в неделю или 68 часов в 10 классе и 68 часов в 11 классе.

Для реализации рабочей программы используется учебно-методический комплекс:

• учебник Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. / Под науч.рук.

Тихонова А. Н. Геометрия. 10-11 классы. Базовый и профильный уровни

• дидактические материалы

Учебник соответствует федеральным компонентам Государственного стандарта общего образования по математике. В нем реализован принцип преемственности с традициями российского образования в области геометрии. Он характеризуется доступностью изложения материала, сочетающейся с достаточной строгостью, краткостью, схематичностью. Его отличает хорошо подобранная система задач, включающая типовые задачи к каждому параграфу, дополнительные задачи к каждой главе и задачи повышенной трудности в конце учебника. Учебник позволяет обеспечить вариативность, дифференцированность и другие принципы обучения.

Дидактические материалы содержат самостоятельные и контрольные работы, работы на повторение и математические диктанты в нескольких вариантах и различных уровней сложности, а также задачи повышенной трудности и примерные задачи к экзамену.

Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

- формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
- развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
- овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
- **воспитание** средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.

Задачи учебного предмета

- Изучение свойств пространственных тел
- Формирование умения применять полученные знания для решения практических задач

Общеучебные умения, навыки и способы деятельности

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

Планируемые результаты освоения учебного предмета

В результате изучения математики на базовом уровне ученик должен

знать/понимать¹

знать/понимать

• значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

¹ Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.

- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

ГЕОМЕТРИЯ

уметь

- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
- строить простейшие сечения куба, призмы, пирамиды;
- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
- использовать при решении стереометрических задач планиметрические факты и методы;
- проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

В результате изучения геометрии в 10 классе ученик должен знать и уметь:

- соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; различать и анализировать взаимное расположение фигур;
- изображать геометрические фигуры и тела, выполнять чертеж по условию задачи;
- решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат;
- проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса;
- вычислять линейные элементы и углы в пространственных конфигурациях, площади поверхностей пространственных тел и их простейших комбинаций;
- применять координатно-векторный метод для вычисления отношений, расстояний и углов;
- строить сечения многогранников;

ОБЯЗАТЕЛЬНЫЙ МИНИМУМ СОДЕРЖАНИЯ ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ

ГЕОМЕТРИЯ

10 класс

Прямые и плоскости в пространстве. Основные понятия стереометрии (точка, прямая, плоскость, пространство).

Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью.

Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла.

Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. *Расстояние между скрещивающимися прямыми*.

Параллельное проектирование. *Площадь ортогональной проекции многоугольника*. Изображение пространственных фигур.

Многогранники. Вершины, ребра, грани многогранника. *Развертка. Многогранные углы.* Выпуклые многогранники. Теорема Эйлера.

Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая *и наклонная* призма. Правильная призма. Параллелепипед. Куб.

Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. *Усеченная пирамида*.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.

Сечения куба, призмы, пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

11 класс

Тела и поверхности вращения. Цилиндр и конус. *Усеченный конус*. Основание, высота, боковая поверхность, образующая, развертка. *Осевые сечения и сечения параллельные основанию*.

Шар и сфера, их сечения, касательная плоскость к сфере.

Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы *и плоскости*. *Формула расстояния от точки до плоскости*.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.

ОСНОВНОЕ СОДЕРЖАНИЕ ГЕОМЕТРИЯ

Прямые и плоскости в пространстве. Основные понятия стереометрии (точка, прямая, плоскость, пространство).

Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью.

Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла.

Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. *Расстояние между скрещивающимися прямыми*.

Параллельное проектирование. *Площадь ортогональной проекции многоугольника*. Изображение пространственных фигур.

Многогранники. Вершины, ребра, грани многогранника. *Развертка. Многогранные углы.* Выпуклые многогранники. Теорема Эйлера.

Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и *наклонная призма*. Правильная призма. Параллелепипед. Куб.

Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. *Усеченная пирамида*.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире. Сечения куба, призмы, пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Тела и поверхности вращения. Цилиндр и конус. *Усеченный конус*. Основание, высота, боковая поверхность, образующая, развертка. *Осевые сечения и сечения параллельные основанию*. Шар и сфера, их сечения, *касательная плоскость* к сфере.

Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы *и плоскости*. *Формула расстояния от точки до плоскости*.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы.

СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

10 класс (2 ч в неделю, всего 68 ч)

1. Введение (аксиомы стереометрии и их следствия)

Представление раздела геометрии – стереометрии. Основные понятия стереометрии. Аксиомы стереометрии и их следствия. Многогранники: куб, параллелепипед, прямоугольный параллелепипед, призма, прямая призма, правильная призма, пирамида, правильная пирамида. Моделирование многогранников из разверток и с помощью геометрического конструктора.

Цель: ознакомить учащихся с основными свойствами и способами задания плоскости на базе групп аксиом стереометрии и их следствий.

О с н о в н а я ц е л ь – сформировать представления учащихся об основных понятиях и аксиомах стереометрии, познакомить с основными пространственными фигурами и моделированием многогранников.

Особенностью учебника является раннее введение основных пространственных фигур, в том числе, многогранников. Даются несколько способов изготовления моделей многогранников из разверток и геометрического конструктора. Моделирование многогранников служит важным фактором развития пространственных представлений учащихся.

2. Параллельность прямых и плоскостей.

Пересекающиеся, параллельные и скрещивающиеся прямые в пространстве. Классификация взаимного расположения двух прямых в пространстве. Признак скрещивающихся прямых. Параллельность прямой и плоскости в пространстве. Классификация взаимного расположения прямой и плоскости. Признак параллельности прямой и плоскости. Параллельность двух плоскостей. Классификация взаимного расположения двух плоскостей. Признак параллельности двух плоскостей. Признаки параллельности двух прямых в пространстве.

Цель: дать учащимся систематические знания о параллельности прямых и плоскостей в пространстве.

О с н о в н а я ц е л ь – сформировать представления учащихся о понятии параллельности и о взаимном расположении прямых и плоскостей в пространстве, систематически изучить свойства параллельных прямых и плоскостей, познакомить с понятиями вектора, параллельного переноса, параллельного проектирования и научить изображать пространственные фигуры на плоскости в параллельной проекции.

В данной теме обобщаются известные из планиметрии сведения о параллельных прямых. Большую помощь при иллюстрации свойств параллельности и при решении задач могут оказать модели многогранников.

Здесь же учащиеся знакомятся с методом изображения пространственных фигур, основанном на параллельном проектировании, получают необходимые практические навыки по изображению пространственных фигур на плоскости. Для углубленного изучения могут служить задачи на построение сечений многогранников плоскостью.

3. Перпендикулярность прямых и плоскостей.

Угол между прямыми в пространстве. Перпендикулярность прямых. Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости. Ортогональное проектирование. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол. Линейный угол двугранного угла. Перпендикулярность плоскостей. Признак перпендикулярности двух плоскостей. Расстояние между точками, прямыми и плоскостями.

Цель: дать учащимся систематические знания о перпендикулярности прямых и плоскостей в пространстве; ввести понятие углов между прямыми и плоскостями.

О с н о в н а я ц е л ь — сформировать представления учащихся о понятиях перпендикулярности прямых и плоскостей в пространстве, систематически изучить свойства перпендикулярных прямых и плоскостей, познакомить с понятием центрального проектирования и научить изображать пространственные фигуры на плоскости в центральной проекции.

В данной теме обобщаются планиметрии сведения известные ИЗ перпендикулярных прямых. Большую помощь при иллюстрации свойств перпендикулярности и при решении задач могут оказать модели многогранников.

В качестве дополнительного материала учащиеся знакомятся с методом изображения пространственных фигур, основанном на центральном проектировании. Они узнают, что центральное проектирование используется не только в геометрии, но и в живописи, фотографии и т.д., что восприятие человеком окружающих предметов посредством зрения осуществляется по законам центрального проектирования. Учащиеся получают необходимые практические навыки по изображению пространственных фигур на плоскости в центральной проекции.

4. Многогранники

Многогранные углы. Выпуклые многогранники и их свойства. Правильные многогранники.

Цель: сформировать у учащихся представление об основных видах многогранников и их свойствах; рассмотреть правильные многогранники.

О с н о в н а я ц е л ь — познакомить учащихся с понятиями многогранного угла и выпуклого многогранника, рассмотреть теорему Эйлера и ее приложения к решению задач, сформировать представления о правильных, полуправильных и звездчатых многогранниках, показать проявления многогранников в природе в виде кристаллов.

Среди пространственных фигур особое значение имеют выпуклые фигуры и, в частности, выпуклые многогранники. Теорема Эйлера о числе вершин, ребер и граней выпуклого многогранника играет важную роль в различных областях математики и ее приложениях. При изучении правильных, полуправильных и звездчатых многогранников следует использовать модели этих многогранников, изготовление которых описано в учебнике, а также графические компьютерные средства.

5.Векторы в пространстве

Векторы в пространстве. Коллинеарные и компланарные векторы. Параллельный перенос. Параллельное проектирование и его свойства. Параллельные проекции плоских фигур. Изображение пространственных фигур на плоскости. Сечения многогранников. Исторические сведения.

Цель: сформировать у учащихся понятие вектора в пространстве; рассмотреть основные операции над векторами.

6.Повторение

Цель: повторить и обобщить материал, изученный в 10 классе.

11 класс (2ч в неделю, всего 68 ч)

1. Координаты точки и координаты векторов пространстве.

Прямоугольная система координат в пространстве. Расстояние между точками в пространстве. Векторы в пространстве. Длина вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Координаты вектора. Скалярное произведение векторов.

Цель: введение понятие прямоугольной системы координат в пространстве; знакомство с координатно-векторным методом решения задач.

Цели: сформировать у учащихся умения применять координатный и векторный методы к решению задач на нахождение длин отрезков и углов между прямыми и векторами в пространстве. В ходе изучения темы целесообразно использовать аналогию между рассматриваемыми понятиями на плоскости и в пространстве. Это поможет учащимся более глубоко и осознанно усвоить изучаемый материал, уяснить содержание и место векторного и координатного методов в курсе геометрии

О с н о в н а я $\,$ ц е л ь - обобщить и систематизировать представления учащихся о декартовых координатах и векторах, познакомить с полярными и сферическими координатами.

Изучение координат и векторов в пространстве, с одной стороны, во многом повторяет изучение соответствующих тем планиметрии, а с другой стороны, дает алгебраический метод решения стереометрических задач.

2.Цилиндр, конус, шар

Основные элементы сферы и шара. Взаимное расположение сферы и плоскости. Многогранники, вписанные в сферу. Многогранники, описанные около сферы. Цилиндр и конус. Фигуры вращения.

Цель: выработка у учащихся систематических сведений об основных видах тел вращения.

Цели: дать учащимся систематические сведения об основных видах тел вращения. Изучение круглых тел (цилиндра, конуса, шара) завершает изучение системы основных пространственных геометрических тел. В ходе знакомства с теоретическим материалом темы значительно развиваются пространственные представления учащихся: круглые тела рассматривать на примере конкретных геометрических тел, изучать взаимное расположение круглых тел и плоскостей (касательные и секущие плоскости), ознакомить с понятиями описанных и вписанных призм и пирамид. Решать большое количество задач, что позволяет продолжить работу по формированию логических и графических умений.

О с н о в н а я $\$ ц е л ь $\$ сформировать представления учащихся о круглых телах, изучить случаи их взаимного расположения, научить изображать вписанные и описанные фигуры.

В данной теме обобщаются сведения из планиметрии об окружности и круге, о взаимном расположении прямой и окружности, о вписанных и описанных окружностях. Здесь учащиеся знакомятся с основными фигурами вращения, выясняют их свойства, учатся их изображать и решать задачи на фигуры вращения. Формированию более глубоких представлений учащихся могут служить задачи на комбинации многогранников и фигур вращения.

3. Объем и площадь поверхности

Понятие объема и его свойства. Объем цилиндра, прямоугольного параллелепипеда и призмы. Принцип Кавальери. Объем пирамиды. Объем конуса и усеченного конуса. Объем шара и его частей. Площадь поверхности многогранника, цилиндра, конуса, усеченного конуса. Площадь поверхности шара и его частей.

Цель: систематизация изучения многогранников и тел вращения в ходе решения задач на вычисление их объемов.

Цели: продолжить систематическое изучение многогранников и тел вращения в ходе решения задач на вычисление их объемов.

Понятие объема вводить по аналогии с понятием площади плоской фигуры и формулировать основные свойства объемов.

Существование и единственность объема тела в школьном курсе математики приходится принимать без доказательства,

так как вопрос об объемах принадлежит, по существу, к трудным разделам высшей математики. Поэтому нужные результаты устанавливать, руководствуясь больше наглядными соображениями. Учебный материал главы в основном должен усвоиться в процессе решения задач.

О с н о в н а я ц е л ь – сформировать представления учащихся о понятиях объема и площади поверхности, вывести формулы объемов и площадей поверхностей основных пространственных фигур, научить решать задачи на нахождение объемов и площадей поверхностей.

Изучение объемов обобщает и систематизирует материал планиметрии о площадях плоских фигур. При выводе формул объемов используется принцип Кавальери. Это позволяет чисто геометрическими методами, без использования интеграла или предельного перехода, найти объемы основных пространственных фигур, включая объем шара и его частей.

Практическая направленность этой темы определяется большим количеством разнообразных задач на вычисление объемов и площадей поверхностей.

Повторение

Цель: повторение и систематизация материала 11 класса.

Цели: повторить и обобщить знания и умения, учащихся через решение задач по следующим темам: метод координат в пространстве; многогранники; тела вращения; объёмы многогранников и тел вращения

Тематическое планирование

10 класс

No	Тема	Количество	Форма текущего и итогового
		часов	контроля
1.	Параллельность в пространстве	12	Контрольная работа №1
2.	Задачи на построение сечений	10	Контрольная работа №2
			Зачет №1
3.	Перпендикулярность в	17	Контрольная работа №3
	пространстве		Зачет №2
4.	Многогранники	10	Контрольная работа №4
5.	Векторы в пространстве	6	Зачет №3
6.	Итоговое повторение	13	Итоговая контрольная работа
	Итого:	68	5 к.р., 3 зачета

11 класс

11 класс					
$N_{\underline{0}}$	Тема	Количество	Форма текущего и итогового		
		часов	контроля		
1.	Повторение. Векторы в	2	Опрос		
	пространстве				
2.	Координаты вектора	8	Контрольная работа №1		
3.	Координатный метод	12	Контрольная работа №2		
4.	Тела вращения	18	Контрольная работа №3		
5.	Объемы	14	Контрольная работа №4		
6.	Объем шара	8	Контрольная работа №5		
7.	Решение зада по курсу геометрии	6	Практикум		
	Итого:	68	6 работ		